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Abstract

The modes of the second-order Timoshenko system for the displacement and rotation of a fixed beam with a restrained

end at the left are formulated in terms of a fundamental spatial response. This is done without decoupling the system into

fourth-order scalar equations. The restrained end leads to time–space boundary conditions which introduce the frequency

as a parameter into the system of equations for determining the modes. These equations involve first-order derivatives and,

consequently, the modes are determined by solving a non-conservative differential system. This modal differential equation

is discussed in terms of a fundamental matrix response. It is determined by applying a closed formula that was obtained by

the first author and involves the characteristic polynomial of the modal differential equation.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Vibrations of beams according to the Timoshenko theory has been considered by several authors [1–4].
Here, we characterize the modes of the Timoshenko model for the displacement and rotation of a fixed beam
with a mass welded to the other end and attached to a translational spring [5].

In the literature, the Timoshenko model is usually decoupled into two fourth-order equations of the same
type [6,7]. The frequency equation and mode shapes are then formulated in terms of the classical Euler basis.
This later is constructed in terms of the roots of the associated characteristic polynomial of a fourth-order
differential equation. The involved constants in the solution modes are then determined by substitution into
the original coupled system and boundary conditions.

Another approach has been given in Refs. [8–11]. It consists in using a basis generated by a fundamental
matrix response which is characterized by given initial conditions. This avoids the need of decoupling the
second-order Timoshenko system. It is kept as a system formed by two coupled equations of second order.
The eigenanalysis is studied in terms of such fundamental response. It turns out that the amplitude vector of a
mode satisfies a non-conservative second-order differential equation. As a basis of solutions, we choose the
one that is generated by a fundamental matrix response and its derivative. This response can be computed in
closed-form through a formula derived in Ref. [8]. See also Ref. [9] or Ref. [10] for mth-order systems in
continuous and discrete time.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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After determining the modes for the coupled Timoshenko equations, we observe that the components of the
modes satisfy the fourth-order equation that is obtained by decoupling the system.

2. Formulation of the problem

In Clark [1] or Ginsberg [5], the unforced coupled equations of the Timoshenko model f or the total
deflection u and the bending slope c of a uniform beam are derived and given by

rA
q2uðt;xÞ

qt2
� kGA

q
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qx
� cðt; xÞ
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Here r is the mass density, A the cross-sectional area, rA the mass per unit length, rI the mass moment of
inertia per unit length about the neutral axis which passes through the center, E the modulus of elasticity, G

the shear modulus, and k a numerical factor depending on the shape of the cross-section.
When a cube of mass m and side dimensions b is welded to the end of a left end clamped beam of length L,

and a spring of stiffness k is attached to the cube, the boundary conditions, that include translational and
rotatory inertia of the cube as shown in (Fig. 1), are given by
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3. Eigenanalysis

In order to determine the eigenfunctions of above system, we substitute the functions u ¼ eiotUðxÞ, c ¼
eiotCðxÞ into the equations given in Eq. (1).

This results in the system

kGAU 00 � kGAC0 þ rAo2U ¼ 0,

EIC00 þ kGAU 0 þ ðrIo2 � kGAÞC ¼ 0. (2)
Fig. 1. A uniform cantilever beam with a restrained end.
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By substituting the modal functions into the boundary conditions, we have

Uð0Þ ¼ 0,

Cð0Þ ¼ 0, (3)
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In matrix form, it follows that

MX00ðxÞ þ CX0ðxÞ þKðoÞXðxÞ ¼ 0, (5)

where X denotes the vector of the amplitudes U, C for the deflection and the bending slope, respectively, and

M ¼
kGA 0

0 EI

� �
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� �
,
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" #
.

We observe that the effect of the shear stress introduces the matrix coefficient C. The frequency appears in the
matrix coefficient K as it would be with an Euler–Bernoulli beam.

In matrix form, the boundary conditions are written as

A11Xð0Þ þ B11X
0ð0Þ ¼ 0,

A21XðLÞ þ B21X
0ðLÞ ¼ 0, (6)

where A11 is the 2� 2 identity matrix, B11 is the 2� 2 zero matrix and
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k � o2m �kGAþ
b

2
ðk �mo2Þ

0
b

2
kGA�

o2mb

3

� �
2
6664

3
7775; B21 ¼

kGA 0

�
kGAb

2
EI

2
4

3
5.

3.1. Solution basis

The general solution of Eq. (5) in terms of initial values can be written as

X ðxÞ ¼ h0ðxÞX ð0Þ þ h1ðxÞX
0ð0Þ,

h0ðxÞ ¼ h0ðxÞMþ hðxÞC,

h1ðxÞ ¼ hðxÞM, (7)

or

X ðxÞ ¼ hðxÞc1 þ h0ðxÞc2 (8)

for arbitrary vectors c1 and c2. Here hðxÞ is the solution of the initial value problem

Mh00ðxÞ þ Ch0ðxÞ þKðoÞhðxÞ ¼ 0, (9)

hð0Þ ¼ 0; Mh0ð0Þ ¼ I , (10)

where 0 denotes the 2� 2 null matrix and I the 2� 2 identity matrix.
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For determining hðxÞ we use the formula derived in Ref. [8]. We first consider the characteristic polynomial

PðsÞ ¼ det½s2Mþ sCþK� ¼
X4
k¼0

bks4�k.

It turns out that

b0 ¼ ab; b1 ¼ 0; b2 ¼ aeo2 þ co2b; b3 ¼ 0; b4 ¼ co4e� co2a,

where

a ¼ kGA; b ¼ EI ; c ¼ rA; e ¼ rI .

Then we find the solution hðxÞ of the initial value problem
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and we let hk be the solution of the matrix difference equation

Mhkþ2 þ Chkþ1 þKhk ¼ 0,
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We have
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The calculations run as follows. The characteristic differential Eq. (11) is

abhðivÞðxÞ þ ðaeþ cbÞo2h00ðxÞ þ ðeo2 � aÞco2hðxÞ ¼ 0,

hð0Þ ¼ h0ð0Þ ¼ h00ð0Þ ¼ 0; abh000ð0Þ ¼ 1. (14)

The characteristic polynomial can be conveniently written as

PðsÞ ¼ abðs4 þ g2s2 � r4Þ,

where

g2 ¼ ðe=bþ c=aÞo2; r4 ¼ co2ð�eo2 þ aÞ=ab.

The roots of the characteristic polynomial PðsÞ are then easily found to be s ¼ �;��; id;�id, where

� ¼ 1=2
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.

Thus

g2 ¼ d2 � �2; r4 ¼ d2�2.

By using the Euler basis or the Laplace transform method, we find that the solution of the initial value
problem (11) is

hðxÞ ¼
d sinhð�xÞ � � sinðdxÞ

abð�2 þ d2Þ�d
. (15)
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The following matrix values are obtained by iterating the initial value problem (12):
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Then
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" #
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3.2. Characteristic equation

We now proceed to determine the characteristic equation that will give the frequencies for which the modes
XðxÞ are to be determined. Since the left end of the beam is fixed, the choice of the matrix basis h; h0 should
simplify computations at such end. The substitution of the general solution

XðxÞ ¼ hðxÞc1 þ h0ðxÞc2; 0pxpL, (17)

where c1, c2 are 2� 1 vectors, into the boundary conditions (6) leads to the linear system

hð0Þc1 þ h0ð0Þc2 ¼ 0:c1 þM�1c2 ¼ 0,

ðA21hðLÞ þ B21h
0ðLÞÞc1 þ ðA21h

0ðLÞ þ B21h
00ðLÞÞc2 ¼ 0.

It follows that c2 ¼ 0 and the characteristic equation is

detðDðoÞÞ ¼ 0, (18)

where

DðoÞ ¼ A21hðLÞ þ B21h
0ðLÞ. (19)

Here the values hðLÞ, h0ðLÞ are to be computed from Eq. (16) and the coefficients A21, B21 are given in Eq. (6).
In particular, by using the Euler basis that leads to Eq. (15), we have

hðxÞ ¼
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where

A ¼ eo2 þ b�2 � a,

B ¼ eo2 � bd2 � a,

C ¼ co2 þ �2a,

D ¼ co2 � d2a

and the involved parameters and constants are as defined above.
It is clear that for each root of the characteristic Eq. (19), we have the mode

Xðx;oÞ ¼ hðx;oÞc1, (21)
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where c1 is a non-zero solution of Dc ¼ 0. The dependence of the characteristic equation as well as the modes
upon frequency o have been emphasized. When the frequency is a double one, we actually have two modes
associated with such frequency. In this situation each column of the matrix h will be then a mode for the
coupled Timoshenko model.

From Eqs. (16) and (21), we have the displacement mode

Uðx;oÞ ¼ aðbh00ðx;oÞ þ ðeo2 � aÞhðx;oÞÞ þ bðah0ðx;oÞÞ (22)

and the rotation mode

Rðx;oÞ ¼ að�ah0ðx;oÞÞ þ bðah00ðx;oÞ þ co2hðx;oÞÞ (23)

for scalar constants a and b that both are not simultaneously zero. Here hðx;oÞ is the solution (15) for each
root o of the characteristic Eq. (19).

We can that verify that Uðx;oÞ and Rðx;oÞ satisfy the characteristic fourth-order differential Eq. (14),
that is

abyðivÞðxÞ þ ðaeþ cbÞo2y00ðxÞ þ ðeo2 � aÞco2yðxÞ ¼ 0 (24)

or equations that are obtained by differentiating once or twice this later equation.
We should observe that this later equation, after dividing by the factor ab, is the fourth-order spatial

equation that arises for the amplitude by substitution into the time fourth-order equation that is obtained
decoupling system (2), that is

a2t2
q4w
qt4
þ b2 � ða2 þ t2Þ

q2w
qx2

� �
q2y
qt2
þ

q4w
qx4
¼ 0, (25)

where

a2 ¼
r

gkG
; b2 ¼

rA

gEI
; t2 ¼

r
gE

. (26)

This equation have been also obtained by a variational argument [12] where the frequency spectrum is
discussed too.
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